Photoammonification and CDOM dynamics in aquatic environments. University of Newcastle, 2002.

Kitidis, V. PhD thesis

Photochemical degradation of chromophoric dissolved organic matter (CDOM) (loss of absorption coefficient at 350 nm (a_{350})) was observed in a series of irradiation experiments of filtered (0.1 µm) river, estuarine and coastal water samples covering a range of a_{350} (1-38 m⁻¹) and salinity (0-34). Simultaneously, increases in CDOM spectral slope ($S_{290-350}$) and the concentration of ammonium were observed. $S_{290-350}$ and a_{350} followed first order kinetics. Three separate phases were identified in the photochemical production of ammonium: a) lag phase (~<1 hour duration); b) production phase (~1 hours duration); c) consumption phase (~>2 hours duration). Ammonium photoproduction rates (mean rate: 113 nmoles $\Gamma^{-1}h^{-1}$) were independent of initial a_{350} , $S_{290-350}$, NH_4^+ concentration and salinity suggesting that different pools of CDOM, found in natural waters, are responsible for photochemical ammonium production and uptake.

Fluorescent dissolved organic matter (FDOM), NO₃⁻, NO₂⁻, NH₄⁺, SiO₄²⁻, PO₄³⁻, a₃₅₀, and S₂₉₀₋₃₅₀ distributions in the Tyne and Tamar estuaries were typical of such environments. Estuarine a_{350} profiles versus salinity indicated consumption of ~26% and ~36% of riverine a_{350} input in the vicinity of the Estuarine Turbidity Maximum (ETM) for the Tyne and Tamar estuaries respectively, presumably mostly due to microbial remineralisation of CDOM. FDOM and S₂₉₀₋₃₅₀ data are consistent with photodegradation of CDOM in the lower Tyne and Tamar estuaries.

Oceanic, Atlantic Meridional Transect (AMT), cruise data showed subsurface a_{350} maxima and $S_{290-350}$ minima in the vicinity of the deep chlorophyll maximum (DCM) indicative of an autochthonous source. The values of $S_{290-350}$ from surface waters (<7m) were significantly higher than in deep waters (20-250m), presumably due to photodegradation of CDOM in the near surface layer. Compilation of all $S_{290-350}$ data (estuarine, coastal and oceanic) versus the light attenuation coefficient (K_d) show that higher $S_{290-350}$ values are found with decreasing light attenuation, suggesting that photodegradation regulates CDOM spectral slope. Nutrient (NO₃⁻, NO₂⁻, NH₄⁺, SiO₄²⁻, PO₄⁻) distributions were typical for the environments encountered.

The estimated annual inputs of nitrogen in potentially photoproduced ammonium into coastal waters (*PN*) from the Tyne (1.3 x 10-6 Tg N a⁻¹) Rivers is ~<0.3 % of their estimated annual DIN inputs (~1.8 x 10-3 Tg N a⁻¹ for each system). The global annual continental shelf ammonium photoproduction was estimated at 78 ± 55Tg N a⁻¹. The magnitude of such estimates demonstrates the role and importance of photoammonification in the aquatic N-cycle.